

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	1

1 Scope:

- 1.1 This specification is applicable to lead free and halogen free of ROHS directive for ACM-A2512 Series metal alloy low-resistance resistor.
- 1.2 This product is for automotive electronic application.
- 1.3 AEC-Q200 qualified, grade 1.

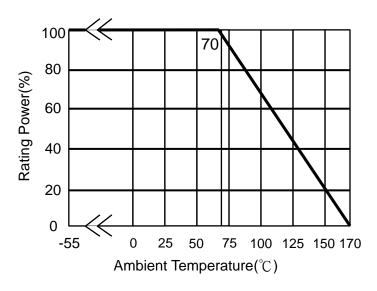
2 Explanation Of Part Numbers

	ΙE		QA	Remark	Janua Dan BATA Cantan
Written	Checked	Approved	Signing	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	
1-6	1-6	MAX	するがん	Do not copy without permission	Series No. 60

Document No. IE-SP-080
Released Date 2019/10/25
Page No. 2

3 Product Specifications:

		Max.	Max.	Max.			nce Range nΩ)	Operating
Туре	# of Terminals	Rating Power	Rating Current	Overload Current	T.C.R. (ppm/°C)	D (±0.5%)	F (±1%);	Temperature Range
		0.5W	31.62A	70.71A	$0.5 \sim 0.9 \text{m}\Omega$: $\leq \pm 17$ $1.0 \sim 15.0 \text{m}\Omega$: $\leq \pm 75$ $15.1 \sim 50.0 \text{m}\Omega$ $\leq \pm 50$	7.0~50.0	0.5~50.0	
1206		1W	44.72A	100.00A	$0.5 \sim 0.9 \text{m}\Omega$: $\leq \pm 17$ $1.0 \sim 15.0 \text{m}\Omega$: $\leq \pm 75$ $15.1 \sim 50.0 \text{m}\Omega$ $\leq \pm 50$	7.0~50.0	0.5~50.0	
		1.5W	54.77A	122.47A	$0.5\sim0.9$ m Ω : $\leq \pm 17$ 1.0 m Ω : $\leq \pm 75$		0.5~1.0	
		1W	44.72A	100.00A	$0.5 \sim 0.9 \text{m}\Omega$: $\leq \pm 10$ $1.0 \sim 1.9 \text{m}\Omega$: $\leq \pm 75$ $2.0 \sim 6.9 \text{m}\Omega$: $\leq \pm 50$ $7.0 \sim 100 \text{m}\Omega$: $\leq \pm 25$	7.0~49	0.5~100	
2010		1.5W	54.77A	122.47A	$0.5 \sim 0.9 \text{m}\Omega$: $\leq \pm 10$ $1.0 \sim 1.9 \text{m}\Omega$: $\leq \pm 75$ $2.0 \sim 6.9 \text{m}\Omega$: $\leq \pm 50$ $7.0 \sim 40 \text{m}\Omega$: $\leq \pm 25$	7.0~40	0.5~40	
		2W	63.25A	141.42A	$0.5 \sim 0.9 \text{m}\Omega$: $\leq \pm 10$ $1.0 \sim 1.9 \text{m}\Omega$: $\leq \pm 75$ $2.0 \sim 6.9 \text{m}\Omega$: $\leq \pm 50$ $7.0 \sim 12 \text{m}\Omega$: $\leq \pm 25$	7.0~12	0.5~12	
		1W	57.74A	129.10A	0.3 m Ω : $\leq \pm 15$ 0.5 ~ 1.0 m Ω : $\leq \pm 75$			
	2	1.5W	70.71A	158.11A	1.1~3.0mΩ: \leq ±50 3.1~100mΩ: \leq ±25	7.0~50	0.3~100	-55~170°C
2512		2W	81.65A	182.57A	$0.3m\Omega$: $\leq \pm 15$ $0.5 \sim 1.0m\Omega$: $\leq \pm 75$ $1.1 \sim 3.0m\Omega$: $\leq \pm 50$ $3.1 \sim 75m\Omega$: $\leq \pm 25$	7.0~50	0.3~75.0	
		3W	100.00A	223.61A	$0.3m\Omega$: $\leq \pm 15$ $0.5 \sim 1.0m\Omega$: $\leq \pm 75$ $1.1 \sim 2.5m\Omega$: $\leq \pm 50$ $2.6 \sim 9.9m\Omega$: $\leq \pm 25$	7.0~9.9	0.3~9.9	
0705		4W	126.49A	316.23A	0.20 m Ω : $\leq \pm 10$ 0.25 ~ 3.0 m Ω : $\leq \pm 50$		0.20~3.0	
2725		5w	158.11A	353.55A	0.20 mΩ: \leq ±10 0.25~0.5mΩ: \leq ±50		0.20~0.5	
		3W	27.39A	61.24A	4.0~100mΩ: ≦±25		4.0~100	
2728		3.5W	29.58A	66.14A	4.0~100mΩ: ≦±25	4.0~19.0	4.0~100	
		4W	31.62A	70.71A	4.0~ 50.0m Ω : ≤±25		4.0~50.0	
45275		2W	63.25A	141.42A	$0.5 \sim 1.0 \text{m}\Omega$: $\leq \pm 75$ $1.1 \sim 200 \text{m}\Omega$: $\leq \pm 50$	1 / () ~ 1()()	0.5~200	
4527S (without heat sink)		3W	77.5A	173.21A	$0.5\sim1.0$ m Ω : $\leq \pm75$ $1.1\sim27$ m Ω : $\leq \pm50$	/ () ~ //	0.5~27	
out only		5W	100A	223.61A	$0.5 \sim 1.0 \text{m}\Omega$: $\leq \pm 75$ $1.1 \sim 7.5 \text{m}\Omega$: $\leq \pm 50$	1 / 11 ~ / 5	0.5~7.5	


PLS NOTE THE VERSION STATED	Dep. DATA Center.
Series N	N. 60
Do not copy without permission	NO. UU

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	3

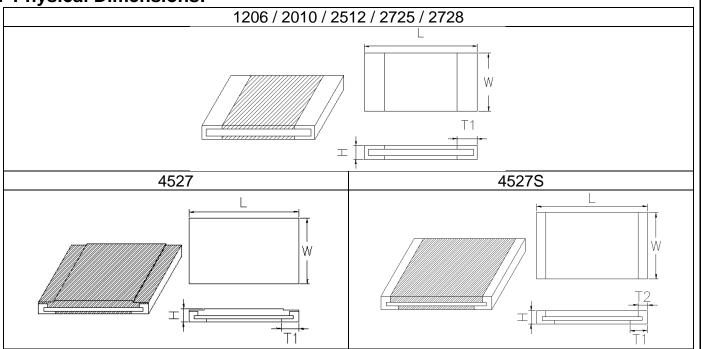
	# of	Max.	Max.	Max.	T C P	Resistance Range (mΩ)		
Туре	Terminals	Rating Power	Rating Current	Overload Current	(ppm/°C)	D (±0.5%)	F (±1%); G (±2%); J (±5%)	Temperature Range
4527	2	5W	100A	223.61A	0.5~1.0mΩ: ≤±75 1.1~120mΩ: ≤±50	7.0 ~120	0.5~120	-55~170°C

3.1 Power Derating Curve: Operating Temperature Range : - 55 ~+170 °C For resistors operated in ambient temperatures 70°C, power rating shall be derated in accordance with the curve below:

3.2 Rating Current:

The following equation may be used to determine the DC (Direct Current) or AC (Alternating Current) currents (RMS, root mean square value) of normal rated power. However, if the result value exceeds the highest current of regulated standards, the highest normal rated power is to be used.

Remark:


I=Rating Current(A)
P= Rating Power(W)
R=Resistance(Ω)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Kemark	Do not copy without permission	Series No. 60

Document No. IE-SP-080
Released Date 2019/10/25
Page No. 4

4 Physical Dimensions:

_	Maximum Power	Resistance		Dimensions - in in	ches (millimeters)	
Туре	Rating (Watts)	Range (mΩ)	L	w	н	T1
		0.5~0.6			0.039±0.010 (1.000±0.254)	0.029±0.010 (0.725±0.254)
		1.0			0.025±0.010 (0.645±0.254)	0.020±0.010
	0.5 & 1.0	2.0 ~ 4.0				(0.508±0.254)
1206		5.0	0.126±0.010 (3.200±0.254)	0.063±0.010 (1.600±0.254)	0.022±0.010 (0.545±0.254)	0.024±0.010 (0.600±0.254)
		6.0 ~50.0	,	,	,	0.020±0.010 (0.508±0.254)
		0.5~0.6			0.039±0.010 (1.000±0.254)	0.029±0.010 (0.725±0.254)
	1.5	1.0			0.025±0.010 (0.645±0.254)	0.020±0.010 (0.508±0.254)
		0.5 ~ 0.9	0.200±0.010 (5.080±0.254)		0.031±0.010	0.057±0.010 (1.440±0.254)
2010	1.0	1.0 ~ 3.0		0.100±0.010	(0.787±0.254)	0.051±0.010 (1.295±0.254)
2010	1.5 2.0	3.1 ~ 4.0		(2.540±0.254)	0.025±0.010 (0.645±0.254)	0.031±0.010
		4.1 ~100.0				(0.787±0.254)
		0.3			0.040±0.010 (1.000±0.254)	0.079±0.010 (2.02±0.254)
		0.5 ~ 0.7			0.031±0.010 (0.787±0.254)	0.079±0.010 (2.02±0.254)
		0.75				0.054±0.010 (1.374±0.254)
2512	1.0 & 1.5	0.8 ~ 3.0	0.246±0.010 (6.248±0.254)	0.126±0.010 (3.202±0.254)	0.031±0.010	0.074±0.010 (1.880±0.254)
		3.1 ~ 4.0	,	, ,	(0.787±0.254)	0.066±0.010 (1.676±0.254)
		4.1 ~78.0			0.025±0.010 (0.645±0.254)	0.044±0.010 (1.118±0.254)
		78.1~ 100.0			0.025±0.010 (0.645±0.254)	0.034±0.010 (0.868±0.254)

D	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

Document No. IE-SP-080
Released Date 2019/10/25
Page No. 5

_	Maximum Power	Resistance		Dimensions - in ir	nches (millimeters)	
Туре	Rating (Watts)	Range (mΩ)	L	w	Н	T1
		0.3			0.040±0.010 (1.000±0.254)	0.079±0.010 (2.02±0.254)
	 	0.5~ 0.7			(0.079±0.010 (2.02±0.254)
	}	0.75			0.031±0.010	0.054±0.010 (1.374±0.254)
	2.0	0.8 ~ 3.0			(0.787±0.254)	0.074±0.010
		3.1 ~ 4.0				(1.880±0.254) 0.066±0.010
	'			l	0.0254±0.010	(1.676±0.254) 0.044±0.010
	'	4.1 ~75.0		l	(0.645±0.254)	(1.118±0.254)
2512		0.3~0.5	0.246±0.010 (6.248±0.254)	0.126±0.010 (3.202±0.254)	0.040±0.010 (1.000±0.254)	0.079±0.010 (2.02±0.254)
		0.7	, , , , , , , , , , , , , , , , , , ,			0.074±0.010 (1.880±0.254)
	3.0	0.75				0.054±0.010 (1.374±0.254)
		0.8 ~ 2.9			0.031±0.010 (0.787±0.254)	0.044±0.010 (1.118±0.254)
		3.0~3.5				0.074±0.010
	'					(1.880±0.254) 0.066±0.010
	'	3.6 ~ 4.0				(1.676±0.254)
	'	4.1 ~ 9.9			0.025±0.010 (0.645±0.254)	0.044±0.010 (1.118±0.254)
		0.20~0.30			,	0.085±0.010 (2.159±0.254)
	 	0.35 ~0.45			0.039±0.010	0.075±0.010 (1.904±0.254)
	1	0.60			(0.991±0.254)	0.071±0.010
	'	0.75				(1.803±0.254) 0.059±0.010
	'		0.268.0.010	0.254.0.040	0.042.0.040	(1.504±0.254)
2725	4.0&5.0	1.0	0.268±0.010 (6.807±0.254)	0.254±0.010 (6.452±0.254)	0.043±0.010 (1.092±0.254)	0.085±0.010
		1.5			0.039±0.010 (0.991±0.254)	(2.159±0.254)
		2.0				0.071±0.010 (1.803±0.254)
	Ţ	2.25~2.5			0.035±0.010 (0.889±0.254)	0.065±0.010 (1.651±0.254)
	 	3.0			(3.3323.23.,	0.051±0.010 (1.295±0.254)
2728	3.0, 3.5 & 4.0	4.0~100.0	0.264±0.010 (6.706±0.254)	0.283±0.010 (7.188±0.254)	0.039±0.010 (0.991±0.254)	0.045±0.010 (1.143±0.254)

	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	6

_	Maximum Power	Resistance	Dimensions - in inches (millimeters)				
Туре	Rating (Watts)	Range (mΩ)	L	w	Н	T1	T2
		0.5		0.270±0.010 (6.850±0.254)	0.055±0.010 (1.400±0.254)	0.136±0.010 (3.465±0.254)	
	2.0	0.6 ~ 3.0				0.127±0.010	
	2.0	4.0 ~ 5.0				(3.215±0.254)	
		5.1 ~ 100				0.071±0.010 (1.815±0.254)	
		0.5				0.136±0.010 (3.465±0.254)	
4527S	5.0	0.6 ~ 3.0	0.450±0.010 (11.430±0.254)			0.127±0.010	0.038±0.010
(without heat sink)		4.0 ~ 5.0				(3.215±0.254)	(0.965±0.254)
		5.1 ~ 27				0.071±0.010 (1.815±0.254)	
		0.5				0.136±0.010 (3.465±0.254)	
		0.6 ~ 3.0				0.127±0.010	
		4.0 ~ 5.0				(3.215±0.254)	
		5.1 ~ 7.5				0.071±0.010 (1.815±0.254)	
4507		0.5				0.143±0.010 (3.645±0.254)	
	F 0	0.6 ~ 3.0	0.450±0.010	0.270±0.010	0.059±0.010	0.127±0.010	
4527	5.0	4.0 ~ 5.0	(11.430±0.254)	(6.850±0.254)	(1.500±0.254)	(3.215±0.254)	
		5.1 ~ 120				0.071±0.010 (1.815±0.254)	

4.1 Material of Alloy

Туре	Watts	Material	Resistance
	0.5	Copper-Manganese Alloy	≤4.0mΩ
1206 1.0 1.5		Iron-Chromium Aluminium Alloy	>4.0mΩ
	1.0	Copper-Manganese Alloy	≤4.0mΩ
2010	1.5 2.0	Iron-Chromium Aluminium Alloy	$>$ 4.0m Ω
	1.0	Copper-Manganese Alloy	$<$ 3.5m Ω
2512	1.5 2512 2.0	Iron-Chromium Aluminium Alloy	≥3.5mΩ
	3.0	Copper-Manganese Alloy	≤2.5mΩ
	3.0	Iron-Chromium Aluminium Alloy	\geq 3.0m Ω
2725	4.0	Copper-Manganese Alloy	≤0.5mΩ
2725	5.0	Iron-Chromium Aluminium Alloy	$>$ $0.5 m\Omega$
2728	3.0 3.5 4.0	Iron-Chromium Aluminium Alloy	All
	2.0	Copper-Manganese Alloy	≤3.0mΩ
4527	3.0 5.0	Iron-Chromium Aluminium Alloy	≥4.0mΩ

Damark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Department of a second the section of a second section of a section of	Series No. 60
	Do not copy without permission	

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	7

5 Reliability Performance:

5.1 Electrical Performance:

Test Item	Conditions of Test			Test Limits		
Temperature Coefficient of Resistance (TCR)	 TCR (ppm/°C) = (R2-R1) R1 (T2-T1) R1: resistance of room temperature R2: resistance of 150 °C T1: Room temperature T2: Temperature at 150 °C Refer to JIS C 5201-1 4.8 			Refer to Paragraph 3. general specifications		
	abou	t 30 minutes		s and release the lo e its resistance vari to below): # of rated power		≦±0.5% ≤±2.0% (4527 & 4527S series)
		1206	0.5 1.0 1.5	5 times		
	201	2010	1.0			
Short Time Overload		2512	1.0 1.5 2.0 3.0	5 times		
Overload		0705	4.0	5 times		
	2725	2725	5.0	5 times		
		2728	3.0 3.5 4.0			
		452S	2.0 3.0 5.0	5 times		
	4527		5.0			
		r to JIS C 52				
Insulation Resistance	Put the resistor in the fixture, add 100 VDC in + ,- terminal for 60secs then measured the insulation resistance between electrodes and insulating enclosure or between electrodes and base material. Refer to JIS-C5201-1 4.6			osure	$≥10^{9}Ω$	
Dielectric Withstanding Voltage	Applied 500VAC for 1 minute, and Limit surge current 50 mA (max.) Refer to JIS-C5201-1 4.7			ent 50	No short or burned on the appearance.	

Damada	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

Document No. IE-SP-080
Released Date 2019/10/25
Page No. 8

5.2 Mechanical /Constructional Performance:

Test Item	Conditions of Test	Test Limits
	The tested resistor be immersed 25 mm/sec into molten	≦±0.5%
Resistance to Solder Heat	solder of 260±5℃ for 10±1secs. Then the resistor is left in the room for 1 hour, and measured its resistance variance rate. Refer to JIS-C5201-1 4.18	No evidence of mechanical damage
Solderability	Add flux into tested resistors, immersion into solder bath in temperature 245±5°C for 3±0.5secs. Refer to JIS-C5201-1 4.17	
Core Body Strength	Applied R0.5 test probe at its central part then pushing 5N force on the sample for 10 sec. Refer to JIS-C5201-1 4.15	≤±0.5% No evidence of mechanical damage
	Preconditioning Put tested resistor in the apparatus of PCT, at a temperature of 105°C, humidity of 100% RH, and pressure of 1.22×105 Pa for a duration of 4 hours. Then after left the specimen in a temperature for 2 hours or more. Test method: Test item 1 (Adhesion):	Test item 1: (1). ≤ ±0.5% (2).No evidence of mechanical damage. No terminal peeling off. Test item 2:
	A static load using a R0.5 scratch tool shall be applied on the core of the component and in the direction of the arrow and held for 10 seconds and under load measured its resistance variance rate. Load:17.7N Cross-sectional view	
Joint Strength of Solder	# 0.5 #	
oi Soidei	 ○Test item 2 (Bending Strength): Solder tested resistor on to PC board add force in the middle down, and under load measured its resistance variance rate. D:2mm 	
	Salder Supporting jig Chip realstor	
	Pressurtze (Amount of band) OHM Meter	
	Refer to JIS-C5201-1 4.33	

Domonic	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

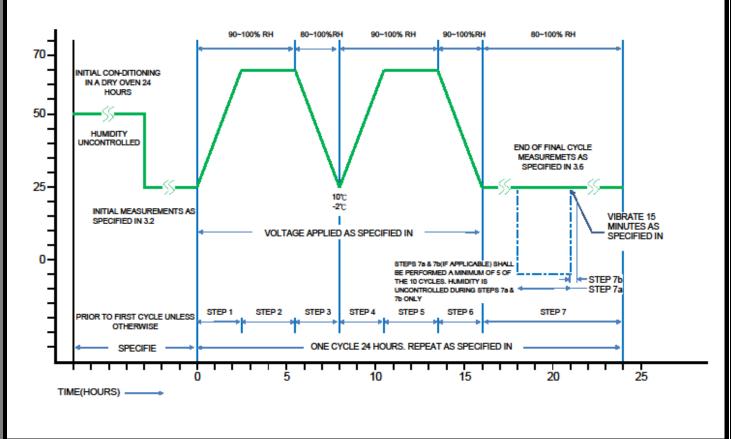
Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	9

Test Item	Conditions of Test	Test Limits
Resistance to solvent	The tested resistor be immersed into isopropyl alcohol of 20~25℃ for 60secs, then the resistor is left in the room for 48 hrs. Refer to JIS-C5201-1 4.29	≤±0.5% No evidence of mechanical damage
Vibration	The resistor shall be mounted by its terminal leads to the supporting terminals on the solid table. The entire frequency range :from 10 Hz to 55 Hz and return to 10 Hz, shall be transferred in 1 min. Amplitude : 1.5mm This motion shall be applied for a period of 4 hours in each 3 mutually perpendicular directions (a total of 12hrs) Refer to JIS-C5201-1 4.22	≦±0.5% No evidence of mechanical damage

5.3 Environmental Performance:

Test Item	Conditions	s of Test	Test Limits
	Put the tested resistor in chamber under temperature		≦±0.5%
Low Temperature	-55 $\pm 2^{\circ}$ C for 1,000 hours. Then	n leaving the tested resistor	No evidence of mechanical damage
Exposure	in room temperature for 60 min	nutes, and measure its	
(Storage)	resistance variance rate.		
	Refer to JIS-C5201-1 4.23.4		
	Put tested resistor in chamber		<u>≤</u> ±1.0%
	170±5°C for 1,000 hours. The	=	No evidence of mechanical damage
Exposure	resistor in room temperature for		
(Storage)	measure its resistance variance	ce rate.	
	Refer to JIS-C5201-1 4.23.2		
	Put the tested resistor in the c		≦±0.5%
	temperature cycling which sho	No evidence of mechanical damage	
	shall be repeated 1,000 times		
Temperature	leaving the tested resistor in the		
Cycling (Rapid	minutes, and measure its resis		
Temperature	Laurant Tanananatura	Testing Condition	
Change)	Lish act Temperature	-55 +0/-10°C	
	Highest Temperature	150 +10/-0°C	
	Dwell time	30min maximum	
	Refer to JESD22-A104	< .0.50/	
Maiatura	Put the tested resistor in cham		≦±0.5%
Moisture Resistance	cycles of damp heat and without which consists of the steps 1 t		No evidence of mechanical damage
(Climatic	leaving the tested resistor in ro		
Sequence)	and measure its resistance va		
Sequence)	Refer to MIL-STD 202 Method		
	Put the tested resistor in cham		≤+0.5%
	5%RH with 10% bias and load	_	No evidence of mechanical damage
D: 11 :11	minutes on, 30 minutes off, tot		no evidence of mechanical damage
Bias Humidity	leaving the tested resistor in ro		
	minutes, and measure its resis	•	
	Refer to JIS-C5201-1 4.24		

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Kemark	Do not copy without permission	Series No. 60



Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	10

Test Item	Conditions of Tes	Test Limits	
Whisker Test	Test item (Thermal Shock test): Testing Condition Minimum storage temperature Maximum storage temperature Temperature-retaining time Number of temperature cycles Inspect for whisker formation on speciunderwent the acceleration test specif 4.2, with a magnifier (stereo microsco higher magnification. If judgment is hause a scanning electron microscope (1,000 or higher magnification. By JESD Standard NO.22A121 class	-55+0/-10°C 85+10/-0°C 10 min. 1,500 imens that fied in subciause pe) of about 40 or ard in this method, SEM) of about	Max. 50 μ m

5.4 Operational Life Endurance:

Test Item	Conditions of Test	Test Limits
Load Life	l .	≤±1.0% ≤±2.0% (4527 & 4527Sseries) No evidence of mechanical damage

Remark

IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED..

Do not copy without permission

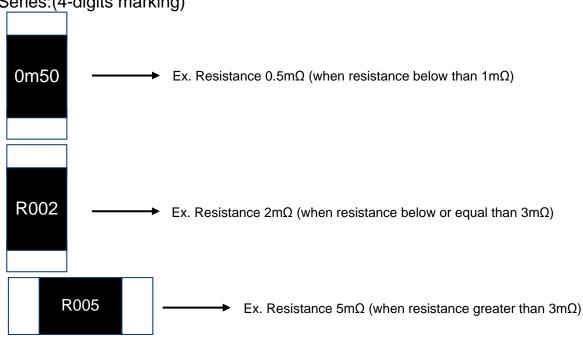
Issue Dep.DATA Center.

Series No.60

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	11

6 Marking Format:

- 6.1 Product resistance is indicated by using two marking notation styles:
 - a. "R" designates the decimal location in ohms, e.g.
 - For $5m\Omega$ the product marking is R005;
 - For 25mΩ the product marking is R025;
 - For 100mΩ the product marking is R100.
 - b. "m" designates the decimal location in milliohms, e.g.
 - For $5.5m\Omega$ the product marking is 5m50;
 - For $25.5m\Omega$ the product marking is 25m5.
- 6.2 1206 Series: (4-digits marking)
 - 6.2.1 Above $1.0m\Omega$:



6.2.2 $0.5\sim0.6$ m Ω :(Square marking)

Recogize Top/Bottom side.

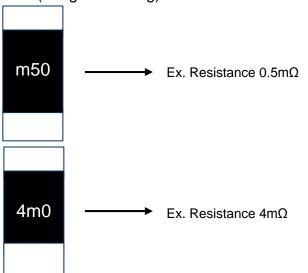
6.3 2010 Series: (4-digits marking)

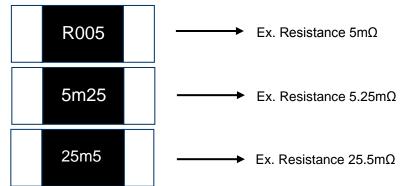
Remark

IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED..

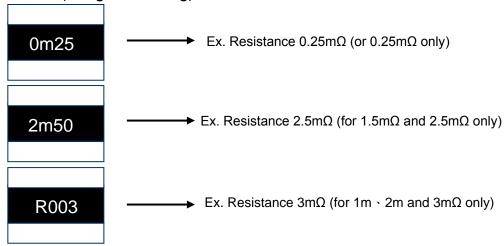
Do not copy without permission

Issue Dep.DATA Center.


Series No.60


Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	12

6.4 2512 Series: (3-digits marking / 4-digits marking)


 $6.4.1 \le 4.0 \text{m}\Omega$ (3-digits marking)

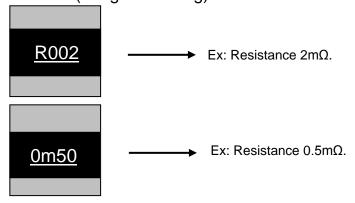
$6.4.2 > 4.0 \text{m}\Omega$ (4-digits marking)

6.5 2725 Series: (4-digits marking)

Series No 60	Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Do not copy without permission	Kemark	Do not copy without permission	Series No. 60

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	13

6.6 2728 Series: (4-digits marking)


R005

 \longrightarrow Ex. Resistance 5mΩ (for all LRA2728 products)

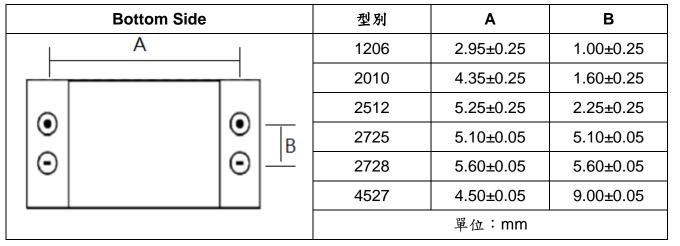
6.7 4527 Series: (4-digits marking)

6.8 4527S Series: (4-digits marking)

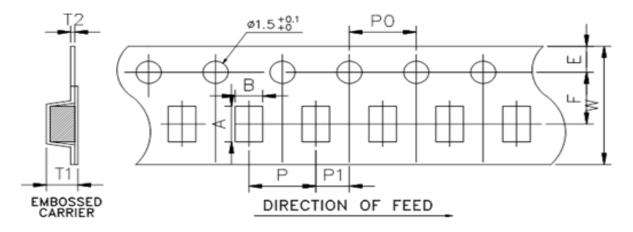
6.9 Marking Style:

Marking Type	R	m	1	2	3	4	5	6	7	8	9	0
1206 2010 2512 2725 2728 4527 4527S			-	2	1		5	60		C	\bigcirc	

7 Plating Thickness:


- 7.1 Ni>=2um
- 7.2 Sn(Tin) >= 3um
- 7.3 Sn(Tin):Matte Sn

Damada	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60


Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	14

8 Measure Point:

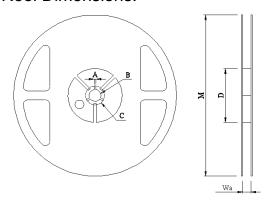
9 Taping specifications:

9.1 Tape Dimensions:

Unit: mm

DIM Item	Α	В	W	Е	F	T1	T2	Р	P0	10*P0	P1
1206 (0.5~0.6mΩ)	3.50±0.10	1.90±0.10	8.0±0.15	1.75±0.10	3.5±0.10	1.27±0.10	0.23±01.0	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
1206 (≥1.0mΩ)	3.48±0.10	1.83±0.10	8.0±0.15	1.75±0.10	3.5±0.10	1.10±0.10	0.20±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
2010	5.45±0.10	2.90±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.33±0.10	0.23±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
2512 (0.3mΩ)	6.74±0.10	3.50±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.60±0.10	0.24±0.05	8.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
2512	6.75±0.10	3.50±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.30±0.10	0.20±0.05	4.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
2725	7.15±0.10	6.75±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.95±0.10	0.25±0.05	8.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
2728	7.15±0.10	7.70±0.10	12.0±0.15	1.75±0.10	5.5±0.10	1.45±0.10	0.25±0.05	12.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
4527	11.80±0.10	7.20±0.10	24.0±0.15	1.75±0.10	11.5±0.10	2.00±0.10	0.30±0.10	12.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10
4527S	11.80±0.10	7.20±0.10	24.0±0.15	1.75±0.10	11.5±0.10	2.00±0.10	0.30±0.10	12.0±0.10	4.0±0.10	40.0±0.20	2.0±0.10

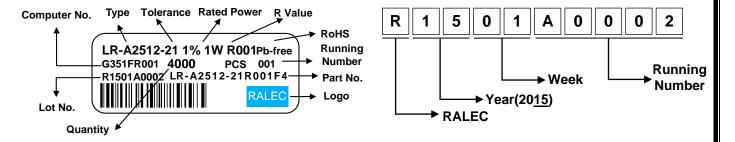
Domonic	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60
	Do not copy without permission	



Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	15

9.2 Packaging model:

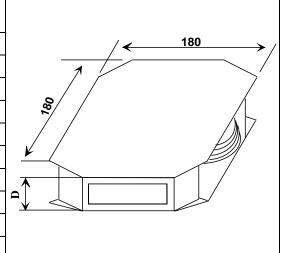
		1			
Type Tape width		Max. Packaging Quantity (pcs/reel)			
		Embossed Plastic Type			
		4mm pitch	8mm pitch	12mm pitch	
1206(0.5~0.6mΩ)	Omm	2,000pcs			
1206(≥1.0mΩ)	8mm	4,000pcs	-		
2010		2,000pcs/4,000pcs			
2512(0.3mΩ)			1,000pcs		
2512	12mm	4,000pcs			
2725			1,000pcs		
2728				1,000pcs	
4527 4527S	24mm			500pcs	


9.3 Reel Dimensions:

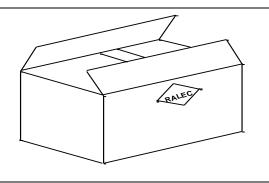
Unit: mm

Reel Type / Tape	W	M	Α	В	С	D	
7" reel for 8 mm tape	9.0 ± 0.5	178 ± 2.0	178 ± 2.0		12 5 . 0 5		60.0 ± 1.0
7" reel for 12 mm tape	13.8 ± 0.5			2.0 ± 0.5	13.5 ± 0.5	21.0 ± 0.5	80.0 ± 1.0
7" reel for 24 mm tape	25.0 ± 1.0			13.2 ± 0.5	17.7 ± 0.5	60.0 ± 1.0	

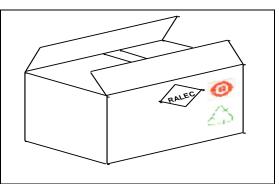
9.4 Label


Damank	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
Remark	Do not account the out-of-series	Series No. 60
	Do not copy without permission	

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	16


9.5 Inner Box:

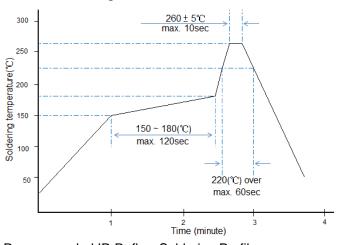
	=		
Reel Number (for 8 mm tape)	Reel Number (for 12 mm tape)	Reel Number (for 24 mm tape)	D Dimension (mm)
1	-	-	12
2	1	-	24
3	2	1	36
4	-	-	48
5	3	2	60
6	4	-	72
7	-	3	84
8	-	-	96
9	-	-	108
10	-	4	120

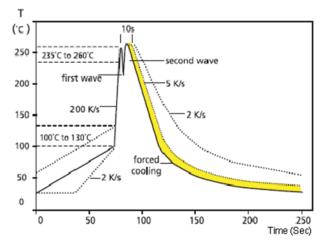

9.6 Box:

10R Inner Box Number	L(mm)	W(mm)	D(mm)
2	272	205	210
4	375	280	210
8	544	380	210

9.7 Box(For China):

10R Inner Box Number	L(mm)	W(mm)	D(mm)
2	272	205	210
4	375	280	210
8	544	380	210


Damada	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

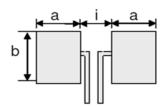

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	17

10 Technical application notes:(This for recommendation, please customer perform adjustment according to actual application)

- 10.1 Recommend Soldering Method:
 - 10.1.1 Surface-mount components are tested for solderability at a temperature of 245 °C for 3 seconds.
 - 10.1.2 Typical examples of soldering processes that provide reliable joints without any damage are given in below:

Recommended IR Reflow Soldering Profile MEET J-STD-020D

Recommended double-wave Soldering Profile Typical values (solid line) Process limits (dotted line)

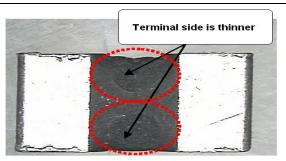

Domonic	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

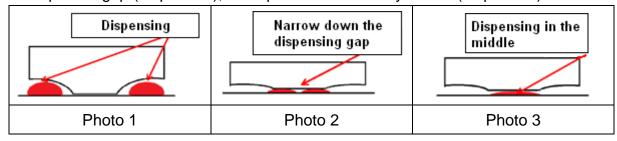
Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	18

10.2 Recommend Land Pattern:

When a component is soldered, the resistance after soldering changes slightly depending on the size of the soldering area and the amount of soldering. When designing a circuit, it is necessary to consider the effect of a decrease or increase in its resistance.

Туре	Maximum Power Rating (Watts)	Resistance			nsions - in millimeters	
.,,,,		Range (mΩ)	а	b	i	
1206	05010015	0.5~0.6	1.65	2.18	0.90	
1206	0.5 & 1.0 & 1.5	1.0 ~ 50.0	1.60	2.10	1.00	
0040	4.0	0.5 ~ 3.0	2.89	0.00	1.22	
2010	1.0	3.1 ~ 100.0	2.29	2.92	2.41	
		0.3 ~ 0.7 0.8~4.0	3.05		1.27	
	1.0 & 1.5	0.75	2.19		3.00	
		4.1 ~ 100.0	2.11		3.18	
		0.3 ~ 0.7 0.8~4.0	3.05		1.27	
2512	2.0	0.75	2.19	3.68	3.00	
		4.1 ~ 75.0	2.11		3.18	
	3.0	0.3~0.5	3.05		1.27	
		0.6~2.9 & 4.1 ~ 9.9	2.19		3.00	
		3.0 ~ 4.0	2.79		1.80	
2725	4.0&5.0	0.20 ~ 3.0	3.18	6.86	1.32	
2728	3.0 & 3.5 & 4.0	4.0 ~ 100.0	2.75	7.82	3.51	
	2.0	0.5 ~ 5.0	5.80	8.74	3.51	
		5.1 ~ 100.0	4.15		6.81	
4527S	3.0 5.0	0.5 ~ 5.0	5.80		3.51	
.02.0		5.1 ~ 27.0	4.15		6.81	
		0.5 ~ 5.0	5.80		3.51	
		5.1 ~ 7.5	4.15		6.81	
4527	5.0	0.5 ~ 5.0	5.80	8.74	3.51	
7021	5.0	5.1 ~ 200.0	4.15	0.74	6.81	

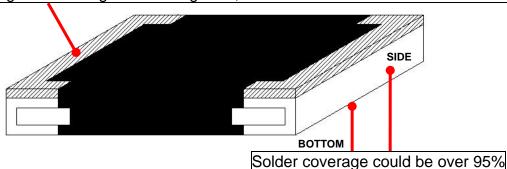

Damada	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
Remark	Do not copy without permission	Series No. 60


Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	19

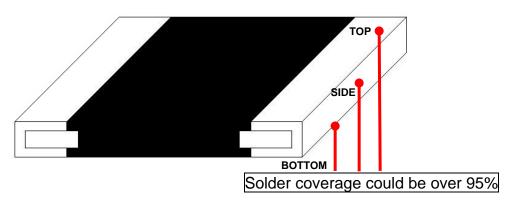
- 10.3 Recommend dispensing method
 - 10.3.1The structure of RALEC metal alloy resistor that both side of main body would be thinner due to process factor (as the photo below).

10.3.2When customer performs wave solder process shall take note on the dispensing gap. If the gap between two dispensing is over, the red-glue will not adhesive the resistor body and be dropped out (as photo 1). Therefore, we suggest customer to narrow down the dispenser gap (as photo 2), or dispenser on the body center (as photo 3)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Kemark	Do not copy without permission	Series No. 60



Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	20


10.4 Product warranted solder area

10.4.14527

Closing the edge 0.5mm might be wetting area, but the area wouldn't influence reliability.

10.4.2Other Type

10.5 The characteristic of Fe/Cr/Al alloy material:

Because of including magnetism, inductor will be generated under high frequency circuit then to cause value shift and influence customer application. If there is related application shall be noted especially or discuss with original factory.

10.6 Automobile Electronic Application:

This specification is for automobile electronic use. RALEC will take no responsibility if any damage, cost or loss occurs when the product has been used in any special circumstances.

	IT'S NOT UNDER CONTROL FOR PDF FILE	Issue Dep.DATA Center.
Remark	PLS NOTE THE VERSION STATED	o 60
	Do not copy without permission	Series No. 60

Document No.	IE-SP-080	
Released Date	2019/10/25	
Page No.	21	

10.7 Environment Precautions:

If consumer intends to use our company product in special environment or condition (including but not limited to those mentioned below), then will need to make individual recognition of product features and reliability accordingly.

- (a) Used in high temperature and humidity environment
- (b) Exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2.
- (c) Used in non-verified liquids including water, oil, chemical and organic solvents.
- (d) Using non-verified resin or other coating material to seal or coat our Company product.
- (e) After soldering, it is necessary to use water-soluble detergents to clean residual solder fluxes, even though no-clean fluxes are recommended.

10.8 Momentary Overload Precautions:

The product might be out of function when momentary overloaded. Please make sure to avoid momentary overloading while using and preserving.

10.9 Operation and Processing Precautions:

- (a) Avoid damage to the edge of resistor and protective layer caused by mechanical stress.
- (b) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (c) Make sure the power rating is under the limit when using the resistor. When power rating is over the limit, the resister will be overloaded. There might be machinery damage due to the climbing temperature.
- (d) If the resister will be exposed under massive impact load (shock wave) in a short period of time, the working environment must be set up well before use.
- (e) Please make evaluation and confirmation when the product is well used in your company and have a through consideration of its fail-safe design to ensure the system safety.

	IT'S NOT UNDER CONTROL FOR PDF FILE	Issue Dep.DATA Center.
Remark	PLS NOTE THE VERSION STATED	
	Do not copy without permission	Series No. 60

Document No.	IE-SP-080
Released Date	2019/10/25
Page No.	22

11 Storage and Transportation requirement:

- 11.1 The temperature condition must be controlled at 25±5°C, the R.H. must be controlled at 60±15%. The stock can maintain quality level in two years.
- 11.2 Please avoid the mentioned harsh environment below when storing to ensure product performance and its' weldability. Places exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2.
- 11.3 When the product is moved and stored, please ensure the correct orientation of the box. Do not drop or squeeze the box. Otherwise, the electrode or the body of the product may be damaged.

12 Attachments

12.1 Document Revise Record (QA-QR-027)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60

Document No. IE-SP-08	
Released Date	2019/10/25
Page No.	23

Legal disclaimer

RALEC, its distributors and agents (collectively, "RALEC"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. RALEC may make changes, modifications and/or improvements to product related information at any time and without notice.

RALEC makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, RALEC disclaims (i) any and all liability arising out of the application or use of any RALEC product, (ii) any and all liability, including without limitation liability for any loss of profits or for direct, indirect, special, punitive, consequential or incidental damages arising out of or related to RALEC products, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

RALEC defined this product is for automotive electronic use, not design for any application for medical life-saving or life support equipment, or any application which may inflict casualties if RALEC product failure occurred. Any and all technical advice furnished by RALEC with reference to the use of RALEC products are given free of charge and RALEC assumes no obligation or liability for the advice given or results obtained, and all such advice are given and accepted at buyer's risk. Buyer shall assume all risk and liability for the results obtained by the use of any RALEC products in combination with other articles or material or in the practice of any process, regardless of any oral or written technical statement made by RALEC with respect to the use of such products by way of technical advice or otherwise. Further, buyer represents and warrants that it has the experience and capacity of determining the correct product for its intended application.

Information provided here is intended to indicate product specifications only. RALEC reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by ECN.

Domark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60